Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion

نویسندگان

  • In-Yup Jeon
  • Hyun-Jung Choi
  • Myung Jong Ju
  • In Taek Choi
  • Kimin Lim
  • Jaejung Ko
  • Hwan Kyu Kim
  • Jae Cheon Kim
  • Jae-Joon Lee
  • Dongbin Shin
  • Sun-Min Jung
  • Jeong-Min Seo
  • Min-Jung Kim
  • Noejung Park
  • Liming Dai
  • Jong-Beom Baek
چکیده

Nitrogen fixation is essential for the synthesis of many important chemicals (e.g., fertilizers, explosives) and basic building blocks for all forms of life (e.g., nucleotides for DNA and RNA, amino acids for proteins). However, direct nitrogen fixation is challenging as nitrogen (N₂) does not easily react with other chemicals. By dry ball-milling graphite with N₂, we have discovered a simple, but versatile, scalable and eco-friendly, approach to direct fixation of N₂ at the edges of graphene nanoplatelets (GnPs). The mechanochemical cracking of graphitic C--C bonds generated active carbon species that react directly with N₂ to form five- and six-membered aromatic rings at the broken edges, leading to solution-processable edge-nitrogenated graphene nanoplatelets (NGnPs) with superb catalytic performance in both dye-sensitized solar cells and fuel cells to replace conventional Pt-based catalysts for energy conversion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts

Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...

متن کامل

A Facile Synthesis of Nitrogen-Doped Highly Porous Carbon Nanoplatelets: Efficient Catalysts for Oxygen Electroreduction

The oxygen reduction reaction (ORR) is of great importance for various renewable energy conversion technologies such as fuel cells and metal-air batteries. Heteroatom-doped carbon nanomaterials have proven to be robust metal-free electrocatalysts for ORR in the above-mentioned energy devices. Herein, we demonstrate the synthesis of novel highly porous N-doped carbon nanoplatelets (N-HPCNPs) der...

متن کامل

N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations

Electrocatalysts are essential to two key electrochemical reactions, oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in renewable energy conversion and storage technologies such as regenerative fuel cells and rechargeable metal–air batteries. Here, we explored N-doped graphene as costeffective electrocatalysts for these key reactions by employing density functional theory (D...

متن کامل

Nitrogen-doped graphene nanoplatelets from simple solution edge-functionalization for n-type field-effect transistors.

The development of a versatile method for nitrogen-doping of graphitic structure is an important challenge for many applications, such as energy conversions and storages and electronic devices. Here, we report a simple but efficient method for preparing nitrogen-doped graphene nanoplatelets via wet-chemical reactions. The reaction between monoketone (C═O) in graphene oxide (GO) and monoamine-co...

متن کامل

Functionalized graphene nanoplatelets from ball milling for energy applications

Having a large surface area, high mechanical strength, excellent electrical and thermal properties, graphene is attractive for a wide range of potential applications, including energy conversion and storage. To realize commercial reality of graphene-based energy devices, it is highly desirable to produce high-quality graphene at a low cost and large scale. In this review, we will give an overvi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013